
International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

1 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

HIGH DIMENSIONAL DATA COMPUTATION USING 

ZINC EXPERIMENTS 

K Venkata Raju
1
, A Vijaya Kumar

2
, MD Mounika

3
,K Sandeep

4
 

 

AssocProfessor, Department of Computer Science & Engineering, K L University, Guntur, Andhra Pradesh, India.
1
 

AsstProfessor,Department of Computer Science & Engineering, K L University, Guntur, Andhra Pradesh, India.
2
 

Student,Department of Computer Science & Engineering, K L University, Guntur, Andhra Pradesh, India.
3
 

Student, Department of Computer Science & Engineering, K L University, Guntur, Andhra Pradesh, India.
4 

 

ABSTRACT 

Skyline
[1]

 is an important operation in many applications to return a set of interesting points from a 

potentially huge data space. Given a table, the operation finds all tuple’s that are not dominated by any 

other tuple’s. It is found that the existing algorithms cannot process skyline on big data efficiently. This 

paper presents a novel skyline algorithm SSPL
[1]

 on big data. SSPL utilizes sorted positional index lists 

which require low space overhead to reduce I/O cost significantly. We present a new indexing method 

named ZINC
[2]

 (for Z-order indexing with Nested Code) that supports efficient skyline computation for 

data with both totally and partially ordered attribute domains. By combining the strengths of the Z-order 

indexing method with a novel nested encoding scheme to represent partial orders, ZINC
[2]

 is able to 

encode partial orders of varying complexity in a concise manner while maintaining a good clustering of 

the PO domain values. Our experimental results have demonstrated that ZINC
[2]

 outperforms the state-of-

the-art TSS technique for various settings. 

Index Terms: ZINC, SDC+, ZB-Tree, Skyline Computation. 

INTRODUCTION 

Data mining is one of the important step in KDD process (Knowledge Discovery and Database). 

It’s the process of extracting data from huge data set.Data mining is about processing data and 

identifying patterns and trendsso that you can decide. Data mining principles have been around 

for many years, but, with the advent of big data, it is even more prevalent.Big data is caused the 

size of the information is very large. It is no longer enough to get relatively simple and 

straightforward statistics out of the system with large data sets.Sky line is one of the important 

operation in many applications to return important points from large database. Skyline has 

attracted extensive attention and many algorithms are proposed. A set of skyline algorithms
[1]

, 

such as Bitmap, NN, BBS, SUBSKY, and ZBtree, utilize indexes to reduce the explored data 

space and return skyline results. For providing skyline computation process on each data set 

traditionally used index-based algorithms utilize the preconstructed data-structures to avoid 

scanning the entire data set. It preconstructsdata-structures with low space overhead. By the data-



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

2 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

structures, the algorithm only involves a small part of table to return the skyline
[4]

 results. Index-

based algorithms have serious limitations and the used indexes can only be built on a small and 

selective set of attributecombinations. Nowadays, big data is used commonly in scientific 

research and business application. 

People will expect to get results quickly and they do not want to wait for several hours. 

For that we propose a novel skyline algorithm on big data, skyline with sorted positional index 

lists (SSPL), to return skyline results efficiently
[1]

. The algorithm utilizes the preconstructeddata-

structures which require low space overhead toreduce I/O cost significantly. SSPL consists of 

two phases: obtaining the candidate positional indexes (phase 1) and retrieving the skyline 

results (phase 2). In phase 1, SSPL first retrieves the sorted positional index lists {L1; L2; . . . ; 

Lm} involved by skyline criteria {A1;A2; . . .;Am} in a round-robin fashion. A mathematical 

analysis is proposed to compute scan depth d of the lists in phase 1. It is guaranteed that the 

candidate positional indexes corresponding to the skyline results are contained in the first d 

elements in {L1; L2; . . . ; Lm}. In phase 1, SSPL performs pruning on any candidate positional 

index retrieved from {L1; L2; . . . ; Lm} to discard the candidate whose corresponding tuple is 

not skyline result. This paper proposes general rules and mathematical analysis for pruning 

operation. Phase 1 ends when there is a candidate positional index seen in all lists of {L1; L2; . . . 

; Lm}. In phase 2, SSPL exploits the obtained candidate positional indexes to compute skyline 

results by a selective and sequential scan on the table. At first glance, the sorted positional index 

lists for SSPL are similar to the sorted column files and. However, the most significant idea for 

SSPL is its pruning operation. Unlike the sorted column files which are used to support sorted 

retrievalmainly, the sorted positional index lists are the data structuresto facilitate pruning and 

reduce the candidate tuples significantly. Although SSPL is an approximate method to obtain 

skyline results
[4]

, its probability of correctness is extremely high. The extensive experiments 

areconducted on two sets of terabyte synthetic data and a set of gigabyte real data, and the 

experimental results show that compared to the existing algorithms; SSPL involves up to six 

orders of magnitude fewer tuples, and obtains up to three orders of magnitude speedup.Skyline 

Sorted Positional Index List algorithm have serious limitations and it fails to process the 

sequential execution in data sets. 

 

Consider the procedure of SSPL we have to extract the efficient features of big datawith 

computation and other features like data assessment we have to introduce Z-order data set 

comparison for efficient big data computation. 

 

For example a set of data records D a skyline query returns the interesting subset of records of D 

that are not dominated (with respect to the attributes of D) by any records in D. A data record r1 

is said to dominate another record r2 if r1 is at least as good as r2 on all attributes, and there 

exists at least one attribute  here r1 is better than r2. 



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

3 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

 

There has been a lot of research on the skyline query computation problem, most of which are 

focused on data attribute domains that are totally ordered (TO), where the best value for a 

domain is either its maximum or minimum value. However, in many applications, some of the 

attribute domains are partially ordered (PO)such as interval data (e.g. temporal intervals), type 

hierarchies, and set-valued domains, where two domain values can be incomparable. A number 

of recent research work has started to address the more general skyline computation problem 

where the data attributes can include a combination of TO and PO domains. 

 

The first method that proposed for the more general skyline query problem is SDC+, which is an 

extension of BBS index method for totally ordered domains. SDC+ works an approximate 

representation of each partially ordered domain by transforming it into two totally ordered 

domains such that each partially ordered value is presented as an interval value. 

 

A new index method has been proposed for computing skyline queries for TO domains called 

ZB-tree
[3]

. It has better performance than BBS. It is the extension of B+ -trees, is based on 

interleaving the bit string representations of attribute values using the Z-order to achieve a good 

clustering of the data records that facilitates efficient data pruning and minimizes the number of 

dominance comparisons. 

RELATED WORK 

INDEX BASED ALGORITHM: 

Index-based skyline algorithms utilize the preconstructed data-structures to avoid scanning the 

entire data set. 

Tan
[3]

make use of bitmap to compute skyline of a table T(A1;A2; . . .;Ad). Given a tuple x = (x1; 

x2; …. .. ;xd) ∈ T, x is encoded as a b-bit bit-vector, b = ∑
d

i=1ki (ki is the cardinality of Ai). We 

assume that xi is the ji
th

 smallest value in Ai, the ki-bit bit-vector representing xi is set as 

follows: bit 1 to bit ji- 1 are set to 0, bit ji to bit ki are set to 1. The encoded table is stored as bit-

transposed files , let BSij represent the bit file corresponding to the j
th

bit in the i
th

 attribute Ai. It 

is given that a tuple x = (x1; x2; . . . ; xd) ∈ T and xi is the (ji)th smallest value in Ai. Let A = 

BS1j1&BS2j2& . . . &BSdjd where & represents the bitwise and operation. And let B = BS1(j1-1)| 

BS2(j2-1)| . . . | BSd(jd-1) where j represents the bitwise or operation. If there is more than a single 

one-bit in C = A&B, x is not a skyline tuple. Otherwise, x is a skyline tuple. 

 

Kossmann propose NN algorithm to processskyline query. NN utilizes the existing methods for 

nearest neighbor search to split data space recursively. By a preconstructed R-tree, NN first finds 

the nearest neighbor to the beginning of the axes. Certainly, the nearest neighbor is a skyline 

tuple. Next, the data space is partitioned by the nearest neighbor to several subspaces. The 



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

4 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

subspaces that are not dominated by the nearest neighbor are inserted intoa to-do list. While the 

to-do list is not empty, NN removes one of the subspaces to perform the same process 

recursively. During the space partitioning, overlapping of the subspaces will incur duplicates, 

NN exploits themethods: Laisser-faire, Propagate, Merge and Fine-grained Partitioning
[5]

, to 

eliminate duplicates. 

 

THE SSPL ALGORITHM 

This section first introduces the data-structures required by SSPL  then describes the overview of 

theSSPL algorithm  next shows how to perform pruning  followed that presents the 

implementation and analysis of SSPL  and finally introduces how to extend SSPL to cover other 

cases . 

 

Sorted Positional Index List 

Given a table T, the positional index (PI) of t ∈ T is i if t is the i
th

 tuple in T.We denote by T(i) 

the tuple in T with its PI = i, and byT(i)(j) the j
th

 attribute of T(i). The execution of SSPLrequires 

sorted positional index lists. Given a tableT(A1;A2; . . .;AM), we maintain a sorted positional 

indexlistLj for each attribute Aj(1 ≤ j ≤M). Lj keeps thepositional index information in T and is 

arranged inascending order of Aj,. That is ∀i1, i2(1≤i1<i2<n); 

 

The sorted positional index lists are constructed as follows: First, table T is kept as a set of 

column files CS =f{C1; C2; . . . ; CM} . The schema of each column file Cj isCj(PI;Aj) (1 ≤ j ≤ 

M), here PI represents the positionalindex of the tuple in T and Aj is the corresponding 

attributevalue of T(PI). Then, each column file Cj is sorted inascending order according to Aj. 

Because SSPL onlyinvolves PI field of column files, the PI values in columnfiles are retained 

and kept as sorted positional index lists. Herewe compare the sorted positional index lists with 

theindexes used in tree-based algorithms briefly. SSPL constructsa sorted positional index list for 

each attribute, onlyM lists are needed. SSPL reduces the space overhead of data structures from 

exponential to linear.  

More importantly,the processing of SSPL
[1]

 can cover all attributes, ratherthan limited to a small 

and selective set of attributecombinations in tree-based algorithms.It is noted that read/append-

only is an importantcharacteristic of big data, and update is performed inperiodic and batch 

mode. Therefore, sorted positional indexlists are worth pre-computing and will be used 

repeatedlyuntil the next update. And when update operation begins,sorted positional index lists 

can be updated by merging thecorresponding column files in big old data and relativelymuch 

smaller new data. 

 

Skyline query processing has involved a lot of research. In this section we will assess the work 

that handles data with both TO and PO domains. 

 



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

5 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

Importance to  ZB-tree, the state-of-the-art approach for data with only TO domains was BBS. 

The main goal  is to map each PO attribute into an approximate representation consisting of a 

pair of TO attributes. The transformed data is then indexed using BBS. Due to the approximate 

representation, this approach requires post-processing of false positive skylines. Although this 

limitation is alleviated with some optimization technique to allow partial progressive skyline 

computation, the overhead of dominance comparisons can be high. 

 

The another state –of –the –art approach is TSS. This approach is based on BBs. Unlike the BBS 

approach, TSS uses a presise representation by mapping each PO domain  value into an ordinal 

number with respect to a topological orderingof the PO domain values and a set of interval 

values. 

 

Another approach is skyline computation
[1]

 for continuous data streaming  with PO domains.The 

main goal is efficient skyline maintenance for streaming non-indexed data which is different 

from indexed based approach for static data. 

 

Another recent approach is dynamic skyline querries which are sky line querries where the 

user preferences are specified at run time. Data with categorical attributes, the partial orders 

representing the user’s value preferences for such attributes are given as  part of the input 

skyline query.  

BACKGROUND WORD 

Given a table T(A1;A2; . . .;AM),∀ t є T, let us denote by t[j] the jth attribute Aj of t. Without 

loss of generality,let a subset of attributes ASskyline={A1;A2; . . .;Am} be skyline criteria
[1]

, and 

the dominance relationship between tuples is defined on ASskyline.  For clarity, we assume that 

min condition only is used for skyline computation. However, the algorithm here can be 

extended to process any combination of condition  (min or max). 

Skyline query. Given a table T, skyline query returns asubset SKY (T) of T, in which ∀ 

t1 є SKY (T), ∌ t2 є T, t2 < t1.Given tuple number n in table T and size m of skylinecriteria, the 

expected number s of skyline results undercomponent independence is known. s ¼=Hm_1;n,here 

Hm;n is the mth order harmonic of n. For any n > 0,H0;n =1. For anym> 0, Hm;0 = 0. For any n 

> 0 andm > 0, Hm;nis inductively define as According to the computation formula of Hm;n, it 

isfound that the number of skyline results does not changesignificantly as the tuple number 

increases, while it is very sensitive to the size of skyline criteria. For example, given m= 3, when 

n increases from 10
5
 to 10

9
, s changes from 66 to 214. Given n = 10

9
, when m increases from 2 

to 5, s changes from 20 to 7,684. Although the absolute number of skyline results is large, its 

proportion among all tuples is rather small. For example, given m =5 and n = 10
9
,s/n= 7.684  

10
-6.

Given tuple number n in table T and size m of skylinecriteria, the expected number s of 



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

6 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

skyline results undercomponent independence is known. s=Hm-1;n,hereHm;n is the mth order 

harmonic of n. For any n > 0,H0;n =1. 

 

 

Figure 1: Partial order reduction process generation in Z-order datasets. 

We represent a partial order by a directed graph G = (V;E),WhereV and E denote, respectively, 

the set of vertices and edges in G such that given v; v0 2 V , v dominates v0 if there is a 

directedpath in G from v to v 0. Given a node v 2 V , we use parent(v) (resp., child(v)) to denote 

the set of parent (resp., child) nodes of v in G. A node v in G is classified as a minimal node if 

parent(v) =Θ; and it is classified as a maximal node if child(v) = Θ;. We use min(G) and max(G) 

to denote, respectively, the set of minimal nodes and maximal nodes of G. 

 

Given a partial order G0, the key idea behind nested encodingis to view G0 as being organized 

into nested layers of partial orders, denoted by G0 ! G1 _ _ _ !Gn1!Gn, whereeachGiis nested 

within a simpler partial order Gi+1, with the lastpartial order Gnbeing a total order. As an 

example, consider thepartial order G0 shown in Fig. 2, where G0 can be viewed as beingnested 

within the partial order G1 which is derived from G0by replacing three subsets of nodes S1 = 

fv6; v7; v8; v9g, S2 = {v13; v14; v15; v16}andS3 = {v20; v21; v22; v23} in G0 by three new 

nodes v 0 1, v0 2 and v 0 3, respectively, in G11. G1 in turn can be viewed as being nested within 

the total order G2 which is derived fromG1 by replacing the subset of nodes S4 = {v3; v 01; v4; 

v5; v1  v11; v02; v12; v17; v03; v18; v1}g by one new node v04 in G2. We refer to the new 

nodes v1, v02, v03 and v04 as virtual nodes; and eachvirtual node v0j in Gi+1 is said to contain 

each of the nodes in Sjthat v0j replaces. By viewing G0 in this way, each node in G0 canbe 

encoded as a sequence of encodings based on the nested nodecontainments within virtual nodes. 

 

PARTIALORDERREDUCTIONALGORITHM 

Given an input partial order
[10]

Gi, algorithm PO-Reduce operates as follows: Let S = {S1; _ _ _ 

Sk} be the collection of regular regions in Gi; (2) If S is empty, then let S = fS1g, where S1 is an 



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

7 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

irregular region in Githat has the smallest size (in terms of thenumber of nodes) among all the 

irregular regions inGi. (3) Create a new partial order Gi+1 from Gias follows. First, initialize 

Gi+1 to be Gi. For each region Sjin S, replace Sjin Gi+1 with a virtualnodevjsuch that parent(v0j) 

= parent(v) with v 2 min(Sj) and child(v0j) = child(v) with v 2 max(Sj). (4) If Gi+1 is a total 

order, then the algorithm terminates; otherwise, invoke the PO-Reduce algorithm with Gi+1 as 

input. 

 

When a node v in a region R is being replaced by a virtual node v0, we say that v is contained in 

v0 (or v0 contains v), denoted by v R! v0. Clearly, the node containment can be nested; for 

example, if v is contained in v0, and v0 is in turn contained in v00, then v is also contained in 

v00. Given an input partial order G0, we define the depth of a node v in G0 to be the number of 

virtual nodes that contain v in the reduction sequence computed by algorithm PO-Reduce. As an 

example, consider the value v6 in Fig. 2 and let R0 = fv6; v7; v8; v9g and R1 = fv3; v1; v4; v5; 

v10; v11; v02 v12; v17; v03; v18; v19g. 

Thus, given an input partial order G0, algorithm PO-Reduceoutputs
[10]

 the following: 

 (1) the partial order reduction sequence,G0! G1 _ _ _ !Gn1!Gn, where Gnis a totalorder; and (2) 

the node containment sequence for each node in G0. If a node v0 in G0 has a depth of k, we can 

represent the node containment sequence for v0 by v0R!0v1_ _ _ R!k1 vk, where each vi is 

contained in the region Ri, i 2 [0; k). 

PERFORMATION ANALYSIS 

To evaluate the performance of our proposed ZINC, we conducted an extensive set of 

experiments to compare ZINC
[2]

 against three competing methods: TSS and the two basic 

extensions of ZB-tree, namely, TSS+ZB and CHE+ZB. Our experimental results show that 

ZINC
[2]

 outperforms the other three competing methods. Given that both TSS+ZB and CHE+ZB 

are also based on ZB-tree, the superior  performance of ZINC demonstrates the effectiveness of 

our proposed NE encoding for PO domains. 

Algorithms: We consider two variants of the main competingmethod, TSS: an unoptimized 

variant of TSS (denoted by TSS) and an optimized variant of TSS (denoted by TSS-opt). In TSS, 

the set of intervals associated with each data / index entry’s PO value are stored explicitly with 

the entry, while in TSS-opt, the intervals associated with an entry are retrieved from a separate 

precomputed structure.  

 

To compare the effectiveness of our proposed nested encoding scheme, we also introduced two 

variants of ZB-tree that are based on using different schemes to encode PO domains. The first 

variant, TSS+ZB, combines the TSS encoding scheme with the ZB-tree method. Each PO 

domain value vpof a data point is encoded into a bitstring based on its ordinal value vtin a 

topological sorting of the PO domain values. The inclusion of vtin the derivation of the data 



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

8 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

point’s Z-address is important to ensure ZB-tree’s monotonicity property. Each leaf node entry in 

TSS+ZB stores a data point p together with the interval set representation of each ofp’s PO 

attribute values. In each internal node entry of  TSS+ZB, besides storing the minptand maxptof 

the corresponding RZ-region (similar to what is done in ZB-tree), for each PO attribute A, a 

merged interval set for A is also stored which is the union of the interval sets for attribute A of 

the covered data points. In TSS+ZB, region-based dominance test is applied as follows: if (1) the 

Z-address of an intermediate skyline point pi dominates minptof an internal node entry ej, and (2) 

the interval set of pi subsumes the 

interval set of ejw.r.t. every PO dimension, then the region represented by ejis dominated by pi 

and is pruned from consideration. 

 

Synthetic datasets: We generated three types of synthetic data-sets according to the 

methodology in. For TO domains, we used the same data generator as [8] to generate synthetic 

datasets with different distributions. For PO domains, we generated DAGs by varying three 

parameters to control their size and complexity: height (h), node density (nd), and edge density 

(ed), where h 2 Z+, nd; ed 2 [0; 1]. Each value of a PO domain corresponds to a node in DAG 

and the dominating relationship between two values is determined by the  existence of a directed 

path between them. Given h, nd, and ed, a DAG is generated as follows. First, a DAGis 

constructed to represent a poset for the powers et of a set of h elements ordered by subset 

containment; thus, the DAG has 2h nodes.Next, (1 - nd) *100% of the nodes (along with incident 

edges)are randomly removed from the DAG, followed by randomly removing (1 -ed) *100% of 

the remaining edges such that the resultant DAG is a single connected component with a height 

of h. Following the approach in [8], all the PO domains for a dataset are based on the same DAG. 

Table 2 shows the parameters and their values used for generating the synthetic datasets, where 

the first value shown for each parameter is its default value. In this section,default parameter 

values are used unless stated otherwise. 

Real dataset: We used a real dataset on movie ratings that isderived from two data sources, 

Netflix and MovieLens. Netflixcontains more than 100 million movie ratings submitted by more 

than 480 thousand users on 17770 movies during the period from 1999 to 2005. MovieLens 

contains more than 1 million ratings submitted by more than 6040 users on 3900 movies. Both 

these data sources use the same rating scale from 0 to 5 with a higher rating value indicating a 

more preferred movie. Our dataset consists of the ratings for 3098 of the movies that are 

common to both data sources. 

 

We derived a PO attribute, named movie preference, for the 3098 movies as follows: a movie mi 

dominates another movie mjiff the average rating of mi in one data source is higher than that of 

mj, and the average rating of mi in the other data source is at least as high as that of mj. We also 

derived two TO attributes for each movie, named average rating and number of ratings, which 



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

9 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

represent, respectively, the movie’s average rating (each value is between 0.00 and 5.00) and the 

total number of ratings that it has received over the two data sources. The number of distinct 

values for these two TO domains are 501 and 219800, respectively. For each of the TO domains, 

a higher attribute value is preferred. 

CONCLUSION 

 This paper presents a novel skyline algorithm SSPL on big data. SSPL utilizes sorted positional 

index lists which require low space overhead to reduce I/O cost significantly. We present a new 

indexing method named ZINC (for Z-order indexing with Nested Code) that supports efficient 

skyline computation for data with both totally and partially ordered attribute domains. By 

combining the strengths of the Z-order indexing method with a novel nested encoding scheme to 

represent partial orders, ZINC is able to encode partial orders of varying complexity in a concise 

manner while maintaining a good clustering of the PO domain values. Our experimental results 

have demonstrated that ZINC
[2]

 outperforms the state-of-the-art TSS technique for various 

settings. 

REFERENCES 

[1]Xixian Han, Jianzhong Li, “Efficient Skyline Computation on Big Data”, IEEE Transactions 

On Knowledge And Data Engineering, Vol. 25, No. 11, November 2013. 

[2] Bin Liu Chee Yong Chan, “ZINC: Efficient Indexing for Skyline Computation”, The 37th 

International Conference on Very Large Data Bases, 

August 29th September 3rd 2011, Seattle, Washington.Proceedings of the VLDB Endowment, 

Vol. 4, No. 3Copyright 2010 VLDB Endowment 21508097/10/12... $ 10.00. 

[3] C.-Y. Chan, H.V. Jagadish, K.-L.Tan, A.K.H. Tung, and Z. Zhang, “Finding K-Dominant 

Skylines in High Dimensional Space,” Proc. ACM SIGMOD Int’l Conf. Management of Data 

(SIGMOD ’06), pp. 503-514, 2006. 

[4] L. Chen and X. Lian, “Efficient Processing of Metric SkylineQueries,” IEEE Trans. 

Knowledge Data Eng., vol. 21, no. 3, pp. 351-365, Mar. 2009. 

[5] M.Gibas, G. Canahuate, and H. Ferhatosmanoglu, “Online IndexRecommendations for High-

Dimensional Databases Using QueryWorkloads,” IEEE Trans. Knowledge and Data Eng., vol. 

20, no. 2,pp. 246-260, Feb. 2008. 

[6] P. Godfrey, “Skyline Cardinality for Relational Processing,”Foundations of Information and 

Knowledge Systems, vol. 2942,pp. 78-97, Springer Berlin/Heidelberg, 2004. 

[7] P. Godfrey, R. Shipley, and J. Gryz, “Algorithms and Analyses forMaximal Vector 

Computation,” The VLDB J., vol. 16, no. 1, pp. 5-28, 2007. 

[8] J. Gray and P.J. Shenoy, “Rules of Thumb in Data Engineering,”Proc. 16th Int’l Conf. Data 

Eng. (ICDE ’00), pp. 3-12, 2000. 



International Journal of Advances in Engineering Research      http://www.ijaer.com  

(IJAER) 2014, Vol. No. 7, Issue No. V, May  ISSN: 2231-5152 

10 

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH 

[9] K. Hose and A. Vlachou, “A Survey of Skyline Processing inHighly Distributed 

Environments,” The VLDB J., vol. 21, no. 3,pp. 359-384, 2012. 

[10] Y. Fang and C. Y. Chan. Efficient skyline maintenance for streamingdata with partially-

ordered domains. In DASFAA, pages 322–336,2010. 


