e-ISSN: 2231-5152/ p-ISSN: 2454-1796

(IJAER) 2015, Vol. No. 10, Issue No. VI, December

FUZZY K- NORMAL AND POLYNOMIAL MATRICES

*R.Indira, **V.Subharani

*Assistant Professor(Sr.Gr),Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu **Research Scholar,Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu

ABSTRACT

In this paper we introduced the concept of fuzzy k-normal and fuzzy k-normal polynomial matrices and study some of its properties.

KEYWORDS: Fuzzy k-normal matrix, Fuzzy k-normal polynomial matrix.

I.INTRODUCTION

Let F = [0,1] be the fuzzy algebra with operations addition and multiplication defined as $a + b = \max\{a, b\}$ and $ab = \min\{a, b\}$, for every $a, b \in [0,1]$. A fuzzy matrix A of order $n \times n$ is defined as $A = \begin{bmatrix} x_{ij}, a_{ij} \end{bmatrix}$, where a_{ij} is a membership value of the element x_{ij} in A. For simplicity, we write A as $A = \begin{bmatrix} a_{ij} \end{bmatrix}$, $a_{ij} \in [0,1]$, i, j = 1 to n [2]. For any matrix $A \in F^{n\times n}$ (set of all fuzzy matrices of order n), the transpose of A is denoted by A^T and is defined as $A^T = \begin{bmatrix} a_{ji} \end{bmatrix}$, i, j = 1 to n. $A \in F^{n\times n}$ is said to be normal matrix if $AA^T = A^T A$ and is said to be unitary matrix if $AA^T = A^T A = I_n$. Let k be a fixed product of disjoint transpositions in $S_n = \{1,2,3,...,n\}$ and K be the associated permutation matrix of k and $K^2 = I$, $K = K^T$. Here, we made a study about fuzzy k-normal and polynomial matrices as an extension of k-normal and unitary polynomial matrices discussed in [1] for complex matrices.

Throughout this paper, we consider all the matrices are fuzzy matrices.

II. FUZZY K-NORMAL MATRICES

In this section, we defined the definion of fuzzy k-normal and fuzzy k-unitary matrices and discussed its algebraic properties.

Definition:2.1

A fuzzy matrix $A \in F^{n \times n}$ is said to be fuzzy k-normal if $AA^TK = KA^TA$.

(IJAER) 2015, Vol. No. 10, Issue No. VI, December

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

Example:2.2

Let
$$A = \begin{bmatrix} 0.1 & 0.2 \\ 0 & 0.1 \end{bmatrix}$$
, $K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then,

$$AA^{T}K = \begin{bmatrix} 0.1 & 0.2 \\ 0.1 & 0.1 \end{bmatrix} = KA^{T}A$$
, A is a fuzzy k-normal matrix.

Theorem:2.3

Let $A \in F^{n \times n}$, then the following conditions are equivalent:

- (i) A is fuzzy k-normal matrix.
- (ii) A^T is fuzzy k-normal matrix.
- (iii) hA is fuzzy k-normal matrix where $h \in F$.

Proof:

(i) ⇔ (ii):

A is fuzzy k-normal

$$\Leftrightarrow AA^T K = K A^T A$$

$$\Leftrightarrow (A A^T K)^T = (K A^T A)^T$$

$$\Leftrightarrow$$
 K (A^T)^T A^T = A^T (A^T)^T K

 \Leftrightarrow A^T is fuzzy k-normal matrix.

(i) ⇔ (iii);

A is fuzzy k-normal

$$\Leftrightarrow A A^T K = K A^T A.$$

$$\Leftrightarrow h^2 A A^T K = h^2 K A^T A.$$

$$\Leftrightarrow$$
 (h A) (h A)^T K = K (h A)^T (h A).

⇔ hA is fuzzy k-normal matrix.

Theorem:2.4

If A, B \in $F^{n \times n}$ are fuzzy k-normal matrices and AB^T K = KB^T A and BA^T K = KA^T B, then A + B is fuzzy k-normal matrix.

Proof:

Since A and B are fuzzy k-normal matrices.

We have $A A^T K = K A^T A$ and $B B^T K = K B^T B$.

$$(A + B) (A + B)^{T} K = AA^{T}K + BB^{T}K + AB^{T}K + BA^{T}K$$

= $KA^{T} A + KB^{T}B + KB^{T}A + KA^{T}B = K(A + B)^{T}(A + B)$.

Hence A + B is fuzzy k-normal matrix.

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

(IJAER) 2015, Vol. No. 10, Issue No. VI, December

Theorem: 2.5

If A, B \in $F^{n \times n}$ are k-normal matrices and AB = BA, then AB is also a fuzzy k-normal matrix.

Proof:

We have to prove
$$[AB][AB]^TK = K[AB]^T[AB]$$

 $AB [AB]^T K = AB A^TB^TK = AA^TBB^TK = AA^TK B^TB = K [BA]^T[AB]$
 $= K[AB]^T[AB].$

Hence AB is also a fuzzy k-normal matrix.

Definition: 2.6

A matrix $A \in F^{n \times n}$ is said to be k-unitary if $AA^TK = KA^TA = K$. If it satisfies the condition then the possibility of A is a kind of invertible matrix, in particular it will be a permutation matrix.

Theorem:2.7

Let $A \in F^{n \times n}$, then the following conditions are equivalent

- (i) A is fuzzy k-unitary matrix.
- (ii) A^T is fuzzy k- unitary matrix.
- (iii) hA is fuzzy k-unitary matrix where $h \in F$.

Proof:

The proof is similar to that of theorem 2.3.

Theorem:2.8

Let A, B \in $F^{n \times n}$. If A and B are fuzzy k-unitary matrices, then AB is a fuzzy k-unitary matrix.

Proof:

A is fuzzy k-unitary then
$$AA^{T}K = KA^{T}A = K$$
.

B is fuzzy k- unitary then
$$BB^{T}K = KB^{T}B = K$$
.

$$(AB) (AB)^{T} K = A B B^{T} A^{T} K = A B B^{T} K K A^{T} K = A K K A^{T} K = A A^{T} K = K.$$

(IJAER) 2015, Vol. No. 10, Issue No. VI, December

$$K (AB)^{T} (AB) = K B^{T} A^{T} AB = K B^{T} K K A^{T} A B = K B^{T} K K B = K B^{T} B = K.$$

Hence $(AB)(AB)^T K = K(AB)^T (AB) = K$, and AB is fuzzy k-unitary matrix.

Theorem: 2.9

Let A, B $\in \mathbb{F}^{n \times n}$. If A and B are fuzzy k-unitary matrices, then BA is fuzzy unitary matrix.

Proof:

Since A and B is fuzzy k- unitary matrix, then

$$A A^{T} K = K A^{T} A = K$$
 and $B B^{T} K = K B^{T} B = K$.

From the above two equations, we have

A
$$A^T K B B^T K = K A^T A K B^T B = I_n$$

$$=> K B B^T K = K A^T A K = I_n => B B^T = A A^T = I_n$$

$$=> B K^2 B^T = A K^2 A^T = I_n => B A A^T K K B^T = A^T K K B^T B A = I_n$$

$$=> B A (B A)^T = (BA)^T B A = I_n.$$

$$=> B A \text{ is fuzzy unitary matrix. Hence the proof.}$$

III. FUZZY K-NORMAL POLYNOMIAL MATRICES

In this section we have given the definition of the fuzzy k-normal and k-unitary polynomial matrices and some of its basic algebraic properties are studied which are analogous to that of k-normal polynomial matrices [1].

Definition: 3.1

A fuzzy k-normal polynomial matrix is a polynomial matrix whose coefficient matrices are fuzzy k-normal matrices.

Example: 3.2

Let A(x) be a fuzzy k-normal polynomial matrices.

$$A(x) = \begin{bmatrix} 0.1 & x^2 + 0.2 & x + 0.1 & 0.2 & x^2 + 0.3 & x \\ 0 & 0.1 & x^2 + 0.2 & x + 0.1 \end{bmatrix}$$

$$= \begin{bmatrix} 0.1 & 0.2 \\ 0 & 0.1 \end{bmatrix} x^2 + \begin{bmatrix} 0.2 & 0.3 \\ 0 & 0.2 \end{bmatrix} x + \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$$

$$= A_2 x^2 + A_1 x + A_0 \text{, where } A_0 \text{, } A_1 \text{, } A_2 \text{ are fuzzy k-normal matrices.}$$

(IJAER) 2015, Vol. No. 10, Issue No. VI, December

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

Theorem: 3.3

If $A(\lambda)$, $B(\lambda) \in F(\lambda)^{n \times n}$ (set of all fuzzy polynomial matrices of order n) are k-normal polynomial matrices and $A(\lambda)B(\lambda) = B(\lambda)A(\lambda)$, then $A(\lambda)B(\lambda)$ is also a fuzzy k-normal polynomial matrix.

Proof:

Let $A(\lambda)=A_0+A_1\lambda+\ldots+A_n\lambda^n$ and $B(\lambda)=B_0+B_1\lambda+\ldots+B_n\lambda^n$ be fuzzy polynomial k-normal matrices, A_0 , $A_1\ldots A_n$ and B_0 , $B_1\ldots B_n$ are fuzzy k-normal matrices. Also given ,

$$A(\lambda)B(\lambda) = B(\lambda)A(\lambda)$$

$$A(\lambda)B(\lambda) = A_0 B_0 + (A_0 B_1 + A_1 B_0)\lambda + \dots + (A_0 B_n + A_1 B_{n-1} + \dots + A_n B_0)\lambda^n$$

$$B(\lambda)A(\lambda) = B_0A_0 + (B_0A_1 + B_1A_0)\lambda + ... + (B_0A_n + B_1A_{n-1} + ... + B_nA_0)\lambda^n$$

Here each coefficient of λ and constants terms are equal.

(i.e)
$$A_0B_0 = B_0A_0$$

$$A_0B_1 + A_1B_0 = B_0A_1 + B_1A_0 = > A_0B_1 = B_0A_1 \quad \text{and} \quad A_1B_0 = B_1A_0 \dots$$

$$A_0B_n + A_1B_{n-1} + \dots + A_nB_0 = B_0A_n + B_1A_{n-1} + \dots + B_nA_0$$

$$=> \quad A_nB_0 \neq B_0A_n , A_1B_{n-1} = B_1A_{n-1} , \dots , A_0B_n \neq B_nA_0$$

Now we have to prove $A(\lambda)B(\lambda)$ is k-normal.

$$\begin{split} A(\lambda)B(\lambda)\left[A(\lambda)B(\lambda)\right]^TK &= A(\lambda)B(\lambda) \ A^T(\lambda)B^T(\lambda)K \ = A(\lambda)A^T(\lambda)B(\lambda)B^T(\lambda)K \\ &= A(\lambda)A^T(\lambda)K \ B^T(\lambda)B(\lambda) \ = K \left[B(\lambda)A(\lambda)\right]^T[A(\lambda) \ B(\lambda)] = K \left[A(\lambda) \ B(\lambda)\right]^T[A(\lambda) \ B(\lambda)]. \end{split}$$

Hence $A(\lambda) B(\lambda)$ is also a fuzzy k-normal polynomial matrix.

Theorem: 3.4

If $A(\lambda) \in F(\lambda)^{n \times n}$, then the following conditions are equivalent:

- (i) $A(\lambda)$ is fuzzy k-normal polynomial matrix.
- (ii) $A^{T}(\lambda)$ is fuzzy k-normal polynomial matrix.
- (iii) $hA(\lambda)$ is fuzzy k-normal polynomial matrix, where $h \in F$.

Proof:

The proof is similar lines to that of theorem 2.3.

International Journal of Advances in Engineering Research

http://www.ijaer.com

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

(IJAER) 2015, Vol. No. 10, Issue No. VI, December

Theorem:3.5

If $A(\lambda)$, $B(\lambda) \in F(\lambda)^{n \times n}$ are fuzzy k-normal polynomial matrices and $A(\lambda)$ $B^{T}(\lambda)$ K = K $B^{T}(\lambda)$ $A(\lambda)$ and $B(\lambda)$ $A^{T}(\lambda)$ K = K $A^{T}(\lambda)$ $B(\lambda)$, then $A(\lambda) + B(\lambda)$ is fuzzy k-normal polynomial matrix.

Proof:

The proof is similar lines to that of theorem 2.4.

Definition: 3.6

A fuzzy k-unitary polynomial matrix is a polynomial matrix whose coefficient matrices are fuzzy k-unitary matrices.

Theorem: 3.7

If $A(\lambda) \in F(\lambda)^{n \times n}$, then the following conditions are equivalent

- (i) $A(\lambda)$ is fuzzy k-unitary polynomial matrix.
- (ii) $A^{T}(\lambda)$ is fuzzy k- unitary polynomial matrix.
- (iii) $hA(\lambda)$ is fuzzy k-unitary polynomial matrix, where $h \in F$.

Proof:

The proof is similar lines to that of theorem 2.3.

Theorem: 3.8

Let $A(\lambda)$, $B(\lambda) \in F(\lambda)^{n \times n}$. If $A(\lambda)$ and $B(\lambda)$ are fuzzy k-unitary polynomial matrices, then $A(\lambda)B(\lambda)$ is fuzzy k-unitary polynomial matrices.

Proof:

The proof is similar lines to that of theorem 2.8.

Theorem: 3.9

Let $A(\lambda)$, $B(\lambda) \in F^{n \times n}$. If $A(\lambda)$ and $B(\lambda)$ are fuzzy k-unitary polynomial matrices, then $B(\lambda)A(\lambda)$ is fuzzy unitary polynomial matrices.

Proof:

The proof is similar lines to that of theorem 2.9.

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

(IJAER) 2015, Vol. No. 10, Issue No. VI, December

REFERENCES

- [1] Indira.R, Subharani.V, On K-Normal and unitary polynomial matrices, Int. J. of New Tech.in Sci. Engg. vol-2, 2015.
- [2] Meenakshi.A.R,Fuzzy Matrix, Theory And Applications,2008.

