e-ISSN: 2231-5152, p-ISSN: 2454-1796

(IJAER) 2016, Vol. No. 12, Issue No. III, September

INTUITIONISTIC FUZZY S- NORMAL AND POLYNOMIAL MATRICES

*R.Indira, **V.Subharani

*(Assistant Professor(Sr.Gr), Department of Mathematics, Anna University,

CEG campus, Chennai-600025, Tamilnadu)

**(Research Scholar, Department of Mathematics, Anna University,

CEG campus, Chennai-600025, Tamiladu)

ABSTRACT

In this paper we introduced the concept of intuitionistic fuzzy s-normal and intuitionistic fuzzy s-normal polynomial matrices and study some of its properties.

KEYWORDS: Intuitionistic fuzzy s-normal matrix. Intuitionistic fuzzy s-normal polynomial matrix.

I.INTRODUCTION

The fuzzy sets were first introduced by Zadeh[4]. Later, Young Bim and Lee[3] defined the concept of intutionistic fuzzy matrices and Pal, Khan and Shaymal[2] developed some results on intutionistic fuzzy matrices. Here, we made a study about intutionistic fuzzy s-normal and intutionistic fuzzy s-normal polynomial matrices as an extension of s-normal and unitary polynomial matrices discussed in [1] for complex matrices. An intutionistic fuzzy matrix A of order $n \times n$ is defined as $A = \begin{bmatrix} x_{ij} \\ a_{ij\mu} \\ a_{ij\lambda} \end{bmatrix}$, where $a_{ij\mu}$ is the membership value and $a_{ij\mu}$ is the non membership value of element x_{ij} in A, which maintain the condition that $0 \le a_{ij\mu} + a_{ij\lambda} \le 1$ i, j = 1 to n and $a_{ij\mu}$, $a_{ij\lambda} \in 1$. For simplicity, we write A as $A = \begin{bmatrix} a_{ij} \\ a_{ij\mu} \\ a_{ij\lambda} \end{bmatrix}$, where $a_{ij} = a_{ij\mu} a_{ij\lambda} a_{i$

$$\mathbf{a} + \mathbf{b} = \langle \max\{a_{ij\mu}, b_{ij\mu}\}, \min\{a_{ij\lambda}, b_{ij\lambda}\} \rangle \text{ and } \mathbf{a}.\mathbf{b} = \langle \min\{a_{ij\mu}, b_{ij\mu}\}, \max\{a_{ij\lambda}, b_{ij\lambda}\} \rangle [2].$$

For any matrix $A = [a_{ij}] \in \mathbb{F}^{n \times n}$, the secondary transpose of A is denoted by A^S and is defined as $A^S = \langle a_{n-j+1,n-i+1} \rangle$. A matrix $I_n \in \mathbb{F}^{n \times n}$ is the identity matrix of order n, whose diagonal entries are all either $\langle 1, 0 \rangle$ or $\langle 0, 1 \rangle$ and all other elements are $\langle 0, 0 \rangle$. An intutionistic fuzzy polynomial matrix is a matrix whose elements are polynomials. For example,

$$A(\lambda) = \begin{bmatrix} \langle \ 0.2 \ , 0.4 \ \rangle \ \lambda + \ \langle \ 0.3 \ , 0.1 \rangle & \langle \ 0.5 \ , 0.4 \ \rangle \ \lambda + \ \langle \ 0.3 \ , 0.2 \rangle \\ \langle \ 0.3 \ , 0.4 \ \rangle \ \lambda + \ \langle \ 0.2 \ , 0.3 \rangle & \langle \ 0.2 \ , 0.8 \ \rangle \ \lambda + \ \langle \ 0.5 \ , 0.2 \rangle \end{bmatrix}$$

is a 2×2 intutionistic fuzzy polynomial matrix.

II. INTUITIONISTIC FUZZY S-NORMAL MATRICES

In this section, we give the definition of intuitionistic fuzzy s-normal and intuitionistic fuzzy s-unitary matrices and discussed its algebraic properties.

International Journal of Advances in Engineering Research

http://www.ijaer.com

e-ISSN: 2231-5152, p-ISSN: 2454-1796

(IJAER) 2016, Vol. No. 12, Issue No. III, September

Definition:2.1

A matrix $A \in F^{n \times n}$ is said to be s-normal if $AA^S = A^SA$.

Example:2.2

Let
$$A = \begin{bmatrix} \langle 0.2, 0.3 \rangle & \langle 0.1, 0.4 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.2, 0.2 \rangle \end{bmatrix}$$
,
$$AA^{S} = \begin{bmatrix} \langle 0.2, 0.3 \rangle & \langle 0.1, 0.4 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.2, 0.2 \rangle \end{bmatrix} = A^{S}A$$
, then A is an intuitionistic fuzzy s-normal matrix.

Theorem:2.3

The following statements are equivalent:

- (i) A is an intuitionistic fuzzy s-normal matrix.
- (ii) A^S is an intuitionistic fuzzy s-normal matrix.
- (iii) hA is an intuitionistic fuzzy s-normal matrix where h∈ F.

Proof:

A is an intuitionistic fuzzy s-normal $\Leftrightarrow AA^S \neq A^S A$ $\Leftrightarrow (A A^S)^S = (A^S A)^S$ $\Leftrightarrow (A^S)^S A^S = A^S (A^S)^S$

A^S is an intuitionistic fuzzy s-normal matrix.

A is an intuitionistic fuzzy s-normal \Leftrightarrow A A^S = A^S A.

$$\Leftrightarrow h^2 A A^S = h^2 A^S A.$$

$$(h A) (h A)^S = (h A)^S (h A).$$

⇔ hA is an intuitionistic fuzzy s-normal matrix.

Theorem:2.4

If A , B are intuitionistic fuzzy s-normal matrices and A $B^S = B^S A$ and $B A^S = A^S B$, then A + B is an intuitionistic fuzzy s-normal matrix.

Proof:

Since A and B are intuitionistic fuzzy s-normal matrices.

We have $A A^S = A^S A$ and $B B^S = B^S B$.

$$(A + B) (A + B)^{S} = AA^{S} + BB^{S} + AB^{S} + BA^{S}$$

= $A^{S} A + B^{S}B + B^{S}A + A^{S}B = (A + B)^{S} (A + B)$.

Hence A + B is an intuitionistic fuzzy s-normal matrix.

International Journal of Advances in Engineering Research

http://www.ijaer.com

e-ISSN: 2231-5152, p-ISSN: 2454-1796

(IJAER) 2016, Vol. No. 12, Issue No. III, September

Theorem:2.5

If A, B are intuitionistic s-normal matrices and AB = BA, then AB is also an intuitionistic fuzzy s-normal matrix.

Proof:

We have to prove $[AB][AB]^S = [AB]^S[AB]$

$$AB [AB]^{S} = AB A^{S}B^{S} = AA^{S}BB^{S} = AA^{S} B^{S}B = [BA]^{S}[AB]$$
$$= [AB]^{S}[AB].$$

Hence AB is an intuitionistic fuzzy s-normal matrix.

Definition: 2.6

A matrix $A \in F^{n \times n}$ is said to be s-unitary if $AA^S = A^SA = I_n$. If it satisfies the condition then the possibility of A is a kind of a permutation matrix.

Theorem:2.7

The following staments are equivalent:

- (i) A is an intuitionistic fuzzy s-unitary matrix.
- (ii) A^S is an intuitionistic fuzzy stunitary matrix.
- (iii) hA is an intuitionistic fuzzy s-unitary matrix where h∈ F.

Proof:

The proof is similar to that of theorem 2.3.

Theorem:2.8

If A and B are intuitionistic fuzzy s-unitary matrices, then AB is an intuitionistic fuzzy s-unitary matrix.

Proof:

A is intuitionistic fuzzy s- unitary then $AA^S = A^SA = I_n$.

B is intuitionistic fuzzy s- unitary then $BB^S = B^SB = I_n$.

$$(AB) (AB)^S = A B B^S A^S = A B B^S A^S = A A^S = I_n.$$

$$(AB)^{S}(AB) = B^{S} A^{S} AB = B^{S} A^{S} A B = B^{S} B = I_{n}.$$

Hence $(AB)(AB)^S = (AB)^S(AB) = I_n$, and AB is an intuitionistic fuzzy s-unitary matrix.

e-ISSN: 2231-5152, p-ISSN: 2454-1796

(IJAER) 2016, Vol. No. 12, Issue No. III, September

Theorem:2.9

If A and B are intuitionistic fuzzy s-unitary matrices, then BA is an intuitionistic fuzzy unitary matrix.

Proof:

Since A and B are intuitionistic fuzzy s- unitary matrix, then

$$A A^S = A^S A = I_n$$
 and $B B^S = B^S B = I_n$.

From the above two equations, we have

$$A A^{S}B B^{S} = A^{S} A B^{S} B = I_{n}$$

$$=> BB^{S} = A^{S} A = I_{n}$$

$$=> BAA^{S} B^{S} = A^{S} B^{S} BA = I_{n}$$

$$=> BA(B A)^{S} = (BA)^{S} BA = I_{n}.$$

=> BA is an intuitionistic fuzzy unitary matrix. Hence the proof.

III. INTUITIONISTIC FUZZY S-NORMAL POLYNOMIAL MATRICES

In this section we have given the definition of the intuitionistic fuzzy s-normal and sunitary polynomial matrices and some of its basic algebraic properties are studied which are analogous to that of on s-normal and unitary polynomial matrices [1].

Definition:3.1

A intuitionistic fuzzy s-normal polynomial matrix is a polynomial matrix whose coefficient matrices are intuitionistic fuzzy s-normal matrices.

Example:3.2

Let $A(\lambda)$ be an intuitionistic fuzzy s-normal polynomial matrix.

$$A(\lambda) = \begin{bmatrix} \langle 0.2, 0.3 \rangle \lambda + \langle 0.1, 0.1 \rangle & \langle 0.1, 0.4 \rangle \lambda + \langle 0.2, 0.2 \rangle \\ \langle 0, 0.4 \rangle \lambda + \langle 0.2, 0.3 \rangle & \langle 0.2, 0.2 \rangle \lambda + \langle 0.1, 0.2 \rangle \end{bmatrix}$$

$$= \begin{bmatrix} \langle 0.2, 0.3 \rangle & \langle 0.1, 0.4 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.2, 0.2 \rangle \end{bmatrix} + \begin{bmatrix} \langle 0.1, 0.1 \rangle & \langle 0.2, 0.2 \rangle \\ \langle 0.2, 0.3 \rangle & \langle 0.1, 0.2 \rangle \end{bmatrix}$$

$$= A_1 \lambda + A_0 \text{ where } A_0, A_1 \text{ are intuitionistic fuzzy s-normal matrices.}$$

Theorem:3.3

The following statements are equivalent:

- (i) $A(\lambda)$ is an intuitionistic fuzzy s-normal polynomial matrix.
- (ii) $A^{S}(\lambda)$ is an intuitionistic fuzzy s-normal polynomial matrix.

International Journal of Advances in Engineering Research

http://www.ijaer.com

(IJAER) 2016, Vol. No. 12, Issue No. III, September

e-ISSN: 2231-5152, p-ISSN: 2454-1796

(iii) $hA(\lambda)$ is an intuitionistic fuzzy s-normal polynomial matrix, where $h \in F$.

Proof:

The proof is similar lines to that of theorem 2.3.

Theorem:3.4

If $A(\lambda)$, $B(\lambda)$ are intuitionistic fuzzy s-normal polynomial matrices and $A(\lambda)$ $B^S(\lambda) = B^S(\lambda) \, A(\lambda)$ and $B(\lambda) \, A^S(\lambda) = A^S(\lambda) \, B(\lambda)$, then $A(\lambda) + B(\lambda)$ is an intuitionistic fuzzy s-normal polynomial matrix.

Proof:

The proof is similar lines to that of theorem 2.4.

Theorem: 3.5

If $A(\lambda)$, $B(\lambda)$ are intuitionistic fuzzy s-normal polynomial matrices and $A(\lambda)B(\lambda) = B(\lambda)A(\lambda)$, then $A(\lambda)B(\lambda)$ is also an intuitionistic fuzzy s-normal polynomial matrix.

Proof:

Let $A(\lambda) = A_0 + A_1\lambda + \ldots + A_n\lambda^n$ and $B(\lambda) = B_0 + B_1\lambda + \ldots + B_n\lambda^n$ be intuitionistic fuzzy polynomial s-normal matrices, A_0 , A_1 , A_n and B_0 , B_1 , B_n are intuitionistic fuzzy s-normal matrices. Also given,

$$A(\lambda)B(\lambda) = B(\lambda)A(\lambda)$$

$$A(\lambda)B(\lambda) = A_0 B_0 + (A_0B_1 + A_1B_0)\lambda + \dots + (A_0B_n + A_1B_{n-1} + \dots + A_nB_0)\lambda^n$$

$$B(\lambda)A(\lambda) = B_0A_0 + (B_0A_1 + B_1A_0)\lambda + ... + (B_0A_n + B_1A_{n-1} + ... + B_nA_0)\lambda^n$$

Here each coefficient of λ and constants terms are equal.

(i.e)
$$A_0B_0 = B_0A_0$$

 $A_0B_1 + A_1B_0 = B_0A_1 + B_1A_0 = A_0B_1 = B_0A_1$ and $A_1B_0 = B_1A_0$

$$\begin{split} A_0B_n + A_1B_{n\text{-}1} + \ldots + A_nB_0 &= B_0A_n + B_1A_{n\text{-}1} + \ldots + B_nA_0 \\ \\ &=> \quad A_nB_0 = B_0A_n \text{ , } A_1B_{n\text{-}1} = B_1A_{n\text{-}1} \text{ ,..., } A_0B_n = B_nA_0 \end{split}$$

Now we have to prove $A(\lambda)B(\lambda)$ is an intuitionistic fuzzy s-normal.

$$\begin{split} A(\lambda)B(\lambda)\left[A(\lambda)B(\lambda)\right]^S &= A(\lambda)B(\lambda) \ A^S(\lambda)B^S(\lambda) \ = A(\lambda)A^S(\lambda)B(\lambda)B^S(\lambda) \\ &= A(\lambda)A^S(\lambda) \ B^S(\lambda)B(\lambda) \ = \ \left[B(\lambda)A(\lambda)\right]^S \left[A(\lambda) \ B(\lambda)\right] = \ \left[A(\lambda) \ B(\lambda)\right]^S \left[A(\lambda) \ B(\lambda)\right]. \end{split}$$

Hence $A(\lambda) B(\lambda)$ is also an intuitionistic fuzzy s-normal polynomial matrix.

e-ISSN: 2231-5152, p-ISSN: 2454-1796

(IJAER) 2016, Vol. No. 12, Issue No. III, September

Definition: 3.6

An intuitionistic fuzzy s-unitary polynomial matrix is a polynomial matrix whose coefficient matrices are intuitionistic fuzzy s-unitary matrices.

Theorem: 3.7

The following statements are equivalent

- (i) $A(\lambda)$ is an intuitionistic fuzzy s-unitary polynomial matrix.
- (ii) $A^{S}(\lambda)$ is an intuitionistic fuzzy s- unitary polynomial matrix.
- (iii) $hA(\lambda)$ is an intuitionistic fuzzy s-unitary polynomial matrix, where $h \in F$

Proof:

The proof is similar lines to that of theorem 2.3

Theorem:3.8

If $A(\lambda)$ and $B(\lambda)$ are intuitionistic fuzzy s-unitary polynomial matrices, then $A(\lambda)B(\lambda)$ is an intuitionistic fuzzy s-unitary polynomial matrices.

Proof:

The proof is similar lines to that of theorem 2.8.

Theorem: 3.9

If $A(\lambda)$ and $B(\lambda)$ are intuitionistic fuzzy s-unitary polynomial matrices, then $B(\lambda)A(\lambda)$ is an intuitionistic fuzzy unitary polynomial matrices.

Proof

The proof is similar lines to that of theorem 2.9.

REFERENCES

- [1] Indira.R, Subharani.V, On S-Normal and unitary polynomial matrices, Int. J. of Inno. Tech. And Exp. Engg. vol-5, issue- 3, 2015.
- [2] Pal.M, Khan.S and Shyamal.A.K, Intutionistic fuzzy matrices, Notes on Intutionistic Fuzzy Sets, 8(2), 51-62, 2002.
- [3] Young Bim Im, Eum Pyo Lee, The determinant of square intutionistic fuzzy matrix, Far East J of Mathematical Sci. 3(5), 789-796, 2001.
- [4] Zadeh. L.A, Fuzzy sets, Information and control, vol-8,338-353, 1965.